求证:当n趋近于无穷大时,n^(1⼀n)的极限为1.

2025-12-05 21:30:12
推荐回答(1个)
回答1:

n^(1/n) = e^ln(n^(1/n))=e^((1/n)ln n)=e^((ln n)/n)当n趋近于无穷大时,(ln n)/n是∞/∞型,可以用洛必达法则:lim(ln n)/n = lim (ln n)'/(n)' =lim (1/n)/1 =lim(1/n)当n->∞时,1/n->0. 所以 limn^(1/n) = lim[e^(...